Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
2.
Polymers (Basel) ; 13(7)2021 Mar 26.
Article in English | MEDLINE | ID: covidwho-1305779

ABSTRACT

Chitosan is broadly used as a biological material since of its excellent biological activities. This work describes investigations of chitosan interaction with SARS-CoV-2, which is occupied by human respiratory epithelial cells through communication with the human angiotension-converting enzyme II (ACE2). The ß-chitosan derivatives are synthesized and characterized by FT-IR, nuclear magnetic resonance (1H and 13C NMR), mass spectrometry, X-ray diffraction, TGA, DSC, and elemental analysis. The ß-chitosan derivatives were screened for cytotoxic activity against the HepG2 and MCF-7 (breast) cancer cell lines. Compound 1h (GI50 0.02 µM) is moderately active against the HepG2 cancer cell line, and Compound 1c is highly active (GI50 0.01 µM) against the MCF-7 cancer cell line. In addition, chitosan derivatives (1a-1j) docking against the SARS coronavirus are found by in-silico docking analysis. The findings show that compound 1c exhibits notable inhibition ability compared with other compounds, with a binding energy value of -7.9 kcal/mol. Based on the molecular docking results, the chitosan analog is proposed to be an alternative antiviral agent for SARS-CoV2.

3.
Front Mol Biosci ; 8: 637989, 2021.
Article in English | MEDLINE | ID: covidwho-1247881

ABSTRACT

This work investigated the interaction of indole with SARS-CoV-2. Indole is widely used as a medical material owing to its astounding biological activities. Indole and its derivatives belong to a significant category of heterocyclic compounds that have been used as a crucial component for several syntheses of medicine. A straightforward one-pot three-component synthesis of indole, coupled with Mannich base derivatives 1a-1j, was synthesized without a catalyst. The products were confirmed by IR, 1H-NMR, 13C-NMR, mass spectra, and elemental analysis. The indole derivatives were tested for cytotoxic activity, using three cancer cell lines and normal cell lines of Human embryonic kidney cell (HEK293), liver cell (LO2), and lung cell (MRC5) by MTT assay using doxorubicin as the standard drug. The result of cytotoxicity indole compound 1c (HepG2, LC50-0.9 µm, MCF-7, LC50-0.55 µm, HeLa, LC50-0.50 µm) was found to have high activity compared with other compounds used for the same purpose. The synthesized derivatives have revealed their safety by exhibiting significantly less cytotoxicity against the normal cell line (HEK-293), (LO2), and (MRC5) with IC50 > 100 µg/ml. Besides, we report an in silico study with spike glycoprotein (SARS-CoV-2-S). The selective molecules of compound 1c exhibited the highest docking score -2.808 (kcal/mol) compared to other compounds. This research work was successful in synthesizing a few compounds with potential as anticancer agents. Furthermore, we have tried to emphasize the anticipated role of indole scaffolds in designing and discovering the much-awaited anti-SARS CoV-2 therapy by exploring the research articles depicting indole moieties as targeting SARS CoV-2 coronavirus.

SELECTION OF CITATIONS
SEARCH DETAIL